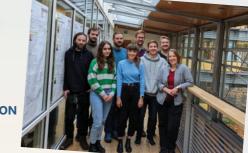
UNIVERSITÄT LEIPZIG

ZEITLER GROUP Institute of Organic Chemistry

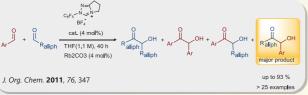


using nature as a blueprint

PRINCIPLES

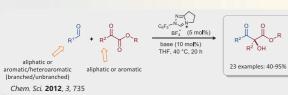
CATALYTIC ● REACTION ● CATALYST ● **REGULATION**

CATALYTIC PRINCIPLES using N-Heterocyclic Carbenes (NHCs)


Cross Acyloin Reactions

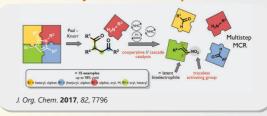
CATALYST DESIGN for N-Heterocyclic Carbenes (NHCs)

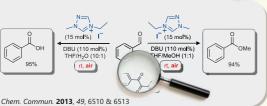
Carboranes as Aryl Mimetics

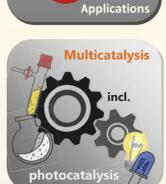


Biomimetic

NHC



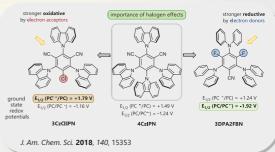


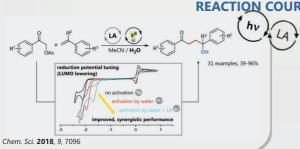


CATALYTIC PRINCIPLES

Photoredox Organocatalysis

 \implies Enantioselective α -Alkylation of Aldehydes




CATALYST DESIGN for Organic Photocatalysts

⇒ Donor-Acceptor Cyanoarenes

