

Artificial Intelligence in Theoretical Chemistry Westermayr Group

Molecular and material design

Goal: use deep generative learning to generate novel structures

- Conditionally build a molecule atom by atom
- Evaluate new molecules against existing molecules using mathematical descriptors

• We use the cutting-edge molecular generator **G-SchNet**,¹ want to find out more:

Application to molecular material design²

Al-method development: Meta learning

Goal: Improve learning by learning how to learn

- Is it possible to transfer knowledge between deep learning models studying different molecules and materials?
 - Existing approaches use transfer learning or learn from scratch for every new system

What if we want to predict a new molecule? We need to start again.

Can we improve and use the knowledge already acquired? **Future work**

We designed new molecules with target properties that are useful for organic electronics.

→ Meta learning is learning from a set of tasks in addition to a task itself

- Create meta learning algorithm to predict hyper parameters of model describing different reactions
- Predict weight distribution of new model given previously trained models **Reference:** Thrun, S. & Pratt, L. *Learning to Learn: Introduction and Overview* in *Learning to* Learn (eds Sebastian Thrun & Lorien Pratt) 3-17 (Springer US, 1998).

Reaction discovery

Goal: Using reinforcement learning and other learning methods to discover new reactions and hidden rules in data

Reinforcement learning for reaction discovery

Learning from interaction with an environment

Generative machine learning models are retrained iteratively to predict molecules with better and better properties.

Future work

- Generation of molecules and materials for CO₂ catalytic conversion
- Design of novel protein structures using AlphaFold.³

References:

[1] Niklas W.A. Gebauer, Michael Gastegger, Kristof T. Schütt, "Generating equilibrium molecules with deep neural newtorks", NeurIPS Workshop on Machine Learning for Molecules and Materials 2018.

[2] Julia Westermayr, Joe Gilkes, Rhyan Barrett, Reinhard J. Maurer, "High-throughput propertydriven generative design of functional organic molecules", arXiv:2207.01476 (2022). [3] John Jumber et al., "Highly accurate protein structure prediction with AlphaFold", Nature 596, 583 (2021).

Al-driven laboratories

Goal: Using artificial intelligence to drive laboratories and optimize reactions

- In a collaboration with Prof. Belder, we plan to couple artificial intelligence (AI) with a lab-on-a-chip synthesis
- Al should analyse results and optimize reaction conditions

- Example:
 - A robot learning to play Tetris or chess
 - AlphaGo Zero, which became world leader in the strategy game Go after 40 days of self-playing¹

Future work

Reformulate chemical problems as games so AI can learn how to play, some examples include:

- Reaction discovery
- Design of artificial photosynthesis
- Reaction optimization (self-driven laboratories)

Machine learning for new discoveries and data analysis

- Most great discoveries are made by accident, can we use AI to accelerate
- Can we translate the thought process of AI when looking at data into

Junjie Zhong, et al. "When robotics met fluidics", Lab Chip 20, 709 (2020)

Raum E-047, Linnéstraße 2, 04103 Leipzig

Juniorprofessur für Künstliche Intelligenz in der Theoretischen Chemie, Philipp-Rosenthal-Straße 31,