

# UNIVERSITÄT LEIPZIG



# **Materials Science and Crystallography** Team of Prof. Dr. Oliver Oeckler

### **MATERIALS**

The group's research focuses on the synthesis, characterization and optimization of a broad range of solid-state compounds:

- > thermoelectric materials for waste-heat recovery and cooling
- > complex disordered crystals with unusual properties
- $\succ$  rare-earth compounds with charge-density waves, elements in "exotic" oxidation states and mixed anions

#### (Oxo-)Nitridosilicates and -phosphates

> diverse structural chemistry of nitridic frameworks with condensed SiN<sub>4</sub>, PN<sub>4</sub>, Si(N,O)<sub>4</sub> and P(N,O)<sub>4</sub> tetrahedra

> doping with  $Eu^{2+}$  or  $Ce^{3+}$  > luminescence materials for LEDs



#### **METHODS**

#### Scanning and Transmission Electron Microscopy

SEM imaging and EDX spectroscopy

- $\rightarrow$  chemical analysis, microstructure of composite materials
- > HRTEM imaging and electron crystallography  $\rightarrow$  structure determination of nanocrystals

- > nitride-based luminescence materials e.g. for LED applications
- > chalcogenides and pnictides
- > cluster compounds

Tellurides as thermoelectric and topological materials

- materials based on GeTe, PbTe, Ge/Sb/Te or Ge/Bi/Te with high thermoelectric performance
- > layered structures with intrinsic defects on various length scales
- > thermoelectric performance optimized by targeted doping







Excitation and photoluminescence spectra and crystal structure of  $(Lu/Y)Ba_2[Si_{12}O_2N_{16}C_3]:Eu^{2+}$  with network of SiC(O/N)<sub>3</sub> tetrahedra



Complex crystal structure of the oxonitridophosphate  $La_{21}P_{40}O_{46}N_{57}$  with highlighted P(N,O)<sub>4</sub> network

#### Charge-density waves (CDW) in rare-earth (RE) pnictide chalcogenides REPnCh (Dr. C. Benndorf)

- > layered mixed-anionic compounds like RESbS and REBiTe with square-like arrangement of Sb and Bi atoms
- > CDWs examined by low-temperature diffraction, electron microscopy and spectroscopy b a k









### Structure determination $\rightarrow$ synchrotron methods

- > single-crystal and powder diffraction
- $\succ$  micro-focused synchrotron beams  $\rightarrow$  micro-/nano-crystals > diffuse scattering, resonant diffraction, and more...





Crystal structure, SEM and HRTEM image of MnBi<sub>2</sub>Te<sub>4</sub>

#### Stability of high-performance and environmentfriendly thermoelectric (composite) materials

 $\succ$  mixed ionic-electronic conductors:  $Zn_{13-\delta}Sb_{10}$ ,  $Cu_2Se$ , and AgCrSe<sub>2</sub> with high thermoelectric performance, but ionic conductivity leads to decomposition under electrical fields > X-ray diffraction computed tomography (3D-XRDCT) in situ



Intensity of a Cu reflection in different layers of the sample (left)





Crystal structure of LaBiTe and electrical resistivity of NdBiTe indicating CDW formation at 150 K

#### **Complex structures and diffuse scattering**

 $\succ$  stacking faults and diffuse scattering of BeP<sub>2</sub> and BeAs<sub>2</sub>  $\succ$  structure determination by combination of synchrotron and electron diffraction, bonding analysis with DFT calculations









# **Synthesis**

> modern solid-state synthesis: high-temperatures, inert conditions, melt-spinning and high-frequency induction, chemical vapor transport, hydrothermal conditions, flux-assisted synthesis ...



#### Physical measurements (thermoelectricity)

> electrical conductivity and Seebeck coefficient > thermal conductivity and heat capacity







Crystal structure of Zn<sub>~12.8</sub>Sb<sub>10</sub> and SEM images of deposited Zn

## CONTACT

Prof. Dr. Oliver Oeckler Universität Leipzig Fakultät für Chemie und Mineralogie Scharnhorststraße 20, 04275 Leipzig E-Mail: oliver.oeckler@gmx.de Tel.: +49 (0) 341 9736251

Diffuse reflections and different stacking modes of layers of As<sub>8</sub><sup>8-</sup> rings in  $BeAs_2$ Studienstiftung des deutschen Volkes uropa fördert Sachsen Deutsche Forschungsgemeinschaft DFG