

universität Leipzig Fakultät für Chemie und Mineralogie Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie

Focused Lecture

Prof. Evan Bieske

School of Chemistry, University of Melbourne, Parkville 3010, Australia

Monday, 28 August 2023 / 2:30 - 3:30 pm CEST

KI. HS / room 015 – Johannisallee 29 – 04103 Leipzig

Spectroscopically probing interactions of H₂, D₂ and HD with halide anions and metal cations – a molecular view of hydrogen storage

The storage of molecular hydrogen in solid media (zeolites and MOFs) often depends on the interactions of H₂ and metal cations or halide anions. To better understand the operative interactions we have spectroscopically probed a series of complexes in the gas phase. Target species include H₂ and D₂ attached to the Cl⁻, Br⁻, I⁻ anions, and to the Li⁺, Na⁺, B⁺, Al⁺, Mg⁺, Mn⁺, Zn⁺ cations. The infrared action spectra exhibit rotational resolution and deliver fundamental insights into the intermolecular interactions. The anion complexes (CI⁻–H₂, Br⁻–H₂, I⁻ $-H_2$ etc.) are linear, whereas the cation complexes (Li⁺– H_2 , Na⁺– H_2 , B⁺– H_2 etc.) are Tshaped, consistent with the dominant chargequadrupole interactions between the ion and

the H₂ molecule. There are several notable features of the spectra. First, it is apparent that *ortho* H₂ is bound more strongly than *para* H₂ to both the anions and the cations. Second, the systems are highly quantum in nature and undergo large amplitude vibrational motions with the Cl⁻–H₂, Br⁻–H₂ and l⁻–H₂ spectra showing clear signs for tunnelling splitting associated with internal rotation of the D₂ sub-unit. In some cases, such as Cr⁺–D₂, the onset of dissociation at a particular excited rovibrational level allows us to place narrow bounds on the dissociation energy, providing a solid benchmark against which current computational techniques can be measured.

The lecture will be streamed via Zoom:

https://uni-leipzig.zoom.us/j/67221664393 ?pwd=eFRVRm5URE9rc256WDh3ZTB3NnNIZz09

Meeting ID: 672 2166 4393 / Passcode: 245588